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The unique way in which each of us perceives the world must arise
from our brain representations. If brain imaging could reveal an
individual’s unique mental representation, it could help us under-
stand the biological substrate of our individual experiential worlds
in mental health and disease. However, imaging studies of object
vision have focused on commonalities between individuals rather
than individual differences and on category averages rather than
representations of particular objects. Here we investigate the in-
dividually unique component of brain representations of particu-
lar objects with functional MRI (fMRI). Subjects were presented
with unfamiliar and personally meaningful object images while
we measured their brain activity on two separate days. We char-
acterized the representational geometry by the dissimilarity ma-
trix of activity patterns elicited by particular object images. The
representational geometry remained stable across scanning days
and was unique in each individual in early visual cortex and hu-
man inferior temporal cortex (hIT). The hIT representation pre-
dicted perceived similarity as reflected in dissimilarity judgments.
Importantly, hIT predicted the individually unique component of
the judgments when the objects were personally meaningful. Our
results suggest that hIT brain representational idiosyncrasies ac-
cessible to fMRI are expressed in an individual’s perceptual judg-
ments. The unique way each of us perceives the world thus might
reflect the individually unique representation in high-level
visual areas.

visual perception | object representations |
representational similarity analysis | neuroimaging | memory

Everyone’s perception of the world is unique. Psychologists
and psychotherapists, using methods including questionnaires

and free association, have long attempted to peer into an individ-
ual’s subjective experiential world. The unique aspects of our ex-
perience coexist with a shared experiential component. We can all
recognize the objects that surround us and name them in a common
language. Consistent with this shared component of experience,
there is evidence that visual stimuli are processed similarly in the
brains of different individuals (1). However, the unique way in
which each of us perceives an object also must arise from brain
activity. Is there an individually unique component to our brain
representations?
Unidimensional aspects of subjective visual percepts, ranging

from estimates of object size, color, vividness, and emotional va-
lence, have separately been found to correlate with interindividual
variation in both univariate regional-average activation and corti-
cal anatomy (2, 3). However, it remains unclear how a person’s
multidimensional subjective percept reflects the multivariate brain-
activity pattern that represents a particular object.
Functional magnetic resonance imaging (fMRI) studies of object

vision have focused largely on commonalities among subjects and
category averages across particular stimuli. These studies have
revealed regions in human inferior temporal cortex (hIT) that
preferentially respond to specific categories (4–9) as well as
widely distributed category information (10). More recently,
similarity analyses of response patterns to particular stimulus
images have revealed exemplar-specific representations (11–14),
clustering of response patterns by natural categories (15–17), and

reinstatement of neural representations during memory recall
(18, 19). These prior studies either tacitly assumed similar rep-
resentations across individuals or explicitly demonstrated com-
monalities between individuals and even between species (14,
20–29).
Previous studies have shown that the hIT representation has

a semantic component (23) and is reflected in perception at the
level of group averages (30). Here we tested the hypothesis that
an individual’s hIT representation predicts idiosyncrasies in his
or her perception of natural objects. Because of hIT’s reciprocal
connections to the memory regions of the medial temporal lobe
(31), we further predicted that personally meaningful objects
elicit individually unique mnemonic associations and are more
distinctly represented in each individual.
We presented familiar and unfamiliar object images to sub-

jects during fMRI and investigated whether early visual cortex
(EVC) and hIT exhibit individually unique representations. We
characterized the representational geometry of each region by
the dissimilarity matrix of activity patterns elicited by particular
object images. This matrix is called the “representational dis-
similarity matrix” (RDM) (16). To address whether the detailed
representational geometries are reflected in behavior, we tested
whether individual idiosyncrasies in similarity judgments can be
predicted on the basis of a subject’s brain RDM.

Results
We used fMRI to measure brain activity while subjects (n = 20)
were presented with 72 pictures of bodies, faces, places, and
man-made objects. We asked our subjects to provide photos that
depict personally meaningful objects present in their daily envi-
ronment (e.g., a parent’s face, the front of the subject’s own
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house, or the subject’s own vehicle (Materials and Methods, Fig.
1A, and Fig. S1). Each subject viewed 18 images from his or her
own environment (the subject’s own “photo album”) and 18
images from another randomly assigned subject’s environment
(that subject’s photo album). This subject-pairing strategy enabled
us to investigate the effects of object familiarity in the absence of
stimulus confounds. All subjects were additionally presented with
a standard set of 36 images that were not personally meaningful.
Each subject performed similarity judgments on the full set of 72
images (32, 33). The subject then was scanned while viewing the
images (day 1). One to two weeks later, the subject was
scanned again while viewing the images (day 2).
The regions of interest (ROIs) were defined by anatomical

and functional criteria (SI Materials and Methods). Briefly, we
defined V1, V2, the lateral occipital complex (LOC), the fusi-
form face area (FFA), and the parahippocampal place area
(PPA) for each subject and scanning day. To investigate the
distributed representations in EVC and hIT, we additionally
defined more inclusive bilateral ROIs. EVC and hIT were each
defined by selecting the 1,200 most visually responsive voxels
within an anatomical mask. The EVC mask included V1, V2, and
V3. The hIT mask spanned a wide expanse of posterior and
anterior temporal cortex, including the category-selective regions
LOC, FFA, and PPA. The ROIs were defined separately for
each subject and scanning day, based on independent anatomical
and functional data acquired on that day.
For each ROI, we estimated the activity pattern associated with

each particular image, which formed the input to representational
similarity analysis (RSA) (16, 34, 35). We computed the represen-
tational dissimilarity for each pair of objects as 1 minus the Pearson
correlation across voxels. These dissimilarities were assembled in an
RDM (a symmetric matrix about a diagonal of zeros).
Consistent with previous studies (23), the hIT activity patterns

clustered according to categories (bodies, faces, places, and
objects), with smaller representational dissimilarities among
objects of the same category. The major categorical division was
between animate and inanimate objects (see Fig. 2 B and C for the
group-average RDM in hIT and Fig. 3 for single-subject examples).

Representational Geometries Are Replicable Across Scanning Days. A
basic requirement for an investigation of individual differences is
that the measurements be reliable within subjects. To assess the
replicability of the RDMs between different days of measure-
ment, we compared RDM estimates between scanning days 1
and 2 (Fig. 3) using the Pearson correlation. We constructed
a subject similarity matrix, which compares each subject’s day 1
RDM with each subject’s day 2 RDM. The diagonal entries in-
dicate the within-subject correlations of the RDMs between day
1 and day 2. The off-diagonal entries indicate the between-
subject correlations of the RDMs, also between day 1 and day 2.
We tested for within- and between-subject RDM replicability using
a stimulus-label randomization test (Materials and Methods and SI
Materials and Methods).
We first describe the results for the set of unfamiliar images

presented to all subjects. The full set of replicability results is
detailed in Figs. S3 and S4. Within subjects, we found replicable
representational geometries across scanning days (EVC: r = 0.32,
P < 0.0001; hIT: r = 0.42, P < 0.0001). Between subjects, both
EVC and hIT also have correlated RDMs (EVC: r = 0.23, P <
0.0001; hIT: r = 0.32, P < 0.0001). This result reflects the
expected similarity of the object representational geometry be-
tween subjects, including the conventional categorical divisions
that have been reported previously (4–17).
For personally meaningful objects, we also observed replicable

representational geometries within and between subjects. Within-
subject replicabilities were significant for both regions (EVC: r =
0.20, P < 0.0001; hIT: r = 0.40, P < 0.0001). The analysis of be-
tween-subject replicabilities for the personally meaningful objects
was constrained to paired subjects who had viewed identical image
sets (their own and each other’s photo albums; SI Materials and
Methods). Between subjects, as well, both EVC and hIT had

correlated RDMs (EVC: r = 0.17, P < 0.0001; hIT: r = 0.30,
P < 0.0001). In sum, representational geometries were clearly
replicable in both EVC and hIT for unfamiliar and familiar
objects and within and between subjects.

Representational Geometries Are Individually Unique in EVC and hIT.
The analysis described above showed that an individual’s rep-
resentation is replicable across scanning days and that it is
similar to the representation in other individuals. We next asked
whether, in addition to the shared component, there also was an
individually unique component to the representation. To test for
an individually unique component, we compared the within-
subject RDM replicability with the between-subject RDM rep-
licability. This procedure enabled us to assess individual differ-
ences in the representation of particular objects while accounting
for differences caused by day-to-day variations of the physio-
logical and psychological state of the subject, the physical state of
the scanner, and measurement noise. If the brain representations
were individually unique, this uniqueness would manifest in a
greater within- than between-subject RDM correlation. We
calculated the difference in RDM replicability (average within-
subject r minus average between-subject r) as an individuation
index (i-index) that reflects the evidence for individual unique-
ness of the representational geometry (Fig. 3A). To determine
whether the i-index was significant, we used a subject-label ran-
domization test (SI Materials and Methods and Fig. S6).

relative’s faceown vehicle

own shoes

time
subject 1

subject 2

friend’s body

from subject’s own photo album 

from other subject’s photo album 

from general set (unfamiliar to subjects)

null trial

Please arrange the objects according to their similarity

done?

B

A

Fig. 1. Experimental design. (A) Brain-activity measurement. Subjects were
grouped in pairs who viewed their own and each other’s personally mean-
ingful object images. There were 10 pairs of subjects. Each subject viewed
a total of 72 images in an event-related fMRI experiment, enabling us to
estimate the response pattern for each particular image. Among the 72
images, 18 were from the subject’s own photo album, and 18 were from the
paired subject’s photo album. The remaining 36 images were unfamiliar
images viewed by all subjects. For the full set of images for one pair of
subjects, see Fig. S1. Subjects fixated on a central cross and performed an
anomaly detection task. (B) Behavioral measurement. Each subject also
judged the similarity of the objects by arranging them on a computer screen,
so that the distance between any two objects reflected their subjective
dissimilarity. In the first trial, the subject arranged all 72 images. On sub-
sequent trials, the subject arranged subsets designed adaptively to estimate
optimally the potentially high-dimensional dissimilarity structure (see ref. 33
for details). Eye regions are occluded above in the images to protect privacy,
but were not occluded in the experiments.
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For unfamiliar objects, EVC [i-index = 0.09, P(average within-
subject r > average between-subject r) < 0.0001] and hIT [i-index =
0.10, P(average within-subject r > average between-subject r) <
0.0001] both exhibited individually unique representational
geometries. For personally meaningful objects, the i-index was not
significant in EVC [i-index = 0.03, P(average within-subject r >
average between-subject r) > 0.05], but it was significant in hIT
[i-index = 0.1, P(average within-subject r > average between-
subject r) < 0.005] (Fig. 4A). For further within- and between-
category analyses, methodological details, and effects of ROI
sizes, see Figs. S5–S7.
The i-index depends on the number of stimuli, the amount of

noise, and the amount of data averaged. To obtain a more gener-
alizable estimate of the strength of the individually unique compo-
nent, we estimated the individually unique pattern variance as
a proportion of the nonnoise pattern variance (SI Materials and
Methods). For hIT, the individually unique pattern component
accounts for about 12.5% of the nonnoise pattern variance.
In sum, we found replicable and individually unique repre-

sentational geometries for both unfamiliar and familiar objects in
hIT and, to a lesser degree, in EVC. The individually unique
component was evident alongside the previously described cat-
egorical divisions shared among subjects. Our findings thus sug-
gest that representational geometries in different individual brains
are, like siblings, at once similar and significantly distinct. If these
individually unique response-pattern geometries constitute the
neural substrate of each individual’s unique perception of the
objects, they should be reflected in individual judgments of
object similarity.

Similarity Judgments Reflect Each Individual’s hIT Representation. To
investigate the relationship between response-pattern geometries
and behavior, we asked our subjects to perform similarity judg-
ments. The judgments were acquired using a computer-based
task, in which the subjects arranged the objects on a screen by
mouse drag-and-drop operations so that the distance between

any two objects reflected their perceived dissimilarity (Materials
and Methods and Fig. 1B) (32, 33).
hIT and similarity judgments share basic categorical divisions in all subjects.
As previously reported (30), the similarity judgments emphasized
categorical divisions similar to those observed in the hIT response
patterns, exhibiting categorical clusters corresponding to bodies,
faces, places, and objects and a clear animate/inanimate division
(Fig. S2B). As expected based on these categorical divisions
evident in both hIT and judgments, RDMs were significantly
correlated between hIT (RDMs averaged across scanning days)
and judgments for both unfamiliar (average within-subject r =
0.22, P < 0.0001; average between-subject r = 0.22, P < 0.0001;
stimulus-label randomization test) and familiar objects (average
within-subject r = 0.23, P < 0.0001; average between-subject r =
0.18, P < 0.0001). In contrast, there was no evidence for a re-
lationship between the representation in EVC and the similarity
judgments for either unfamiliar (average within-subject r = −0.01,
P > 0.05; average between-subject r = −0.02, P > 0.05) or familiar
objects (average within-subject r = −0.02, P > 0.05; average
between-subject r = −0.04, P > 0.05) (Fig. S3).
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Fig. 2. Representational similarity analysis and human inferior temporal
cortex representational geometry. (A) For each pair of stimuli, the response
patterns in a brain region are compared to determine the stimuli’s repre-
sentational dissimilarity. The dissimilarity between two patterns is measured
as 1 minus the Pearson correlation across voxels. These dissimilarities are
assembled in the RDM, which is symmetric about a diagonal of zeros. (B) The
mean hIT RDM for the 36 unfamiliar images, obtained by averaging hIT
RDMs across subjects and scanning days. (C) Multidimensional scaling (metric
stress) finds a 2D arrangement of the stimuli in which the distance between
each pair reflects the dissimilarity of their activity patterns.

Fig. 3. Comparing dissimilarity matrices within and between individuals
reveals individually unique brain representations and brain–behavior rela-
tionships. (A) For each subject and scanning day, we computed an RDM (Fig.
2) from the measured brain-activity patterns. We computed the RDM rep-
licabilities (Pearson correlation between lower-triangular entries) across
scanning days, within subjects (black double arrows), and between subjects
(gray double arrows). Within-subjects (black bar) and between-subjects (gray
bar) RDM replicabilities across scanning days were highly significant. For
each pair of subjects, we computed an i-index (blue bar) as the average
within-subject RDM replicability minus the average between-subject RDM
replicability, averaged across subject pairs. Data shown are for the hIT
representation of familiar images. The i-index was significant, indicating
that different subjects have distinct representational geometries in hIT.
(B) We used the same approach to test the brain–behavior relationship
and its individual uniqueness, considering the correlations between brain
RDMs (averaged across the two scanning days) and behavioral RDMs
(reflecting the similarity judgments performed by each subject). The
brain–behavior relationship was highly significant within and between
subjects for hIT. The brain–behavior i-index was significant as well, in-
dicating that idiosyncrasies of a subject’s similarity judgments are pre-
dicted by that subject’s hIT representational geometry. In A and B, results
are for the 36 familiar images. Significance of the i-index (****P < 0.0001,
***P < 0.001, **P < 0.01, *P < 0.05, all Bonferroni-adjusted for two tests
for regions EVC and hIT) was assessed by randomization of the subject
labels. Error bars represent the SEM, estimated by bootstrap resampling of
the set of subject pairs.
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hIT predicts individual judgment idiosyncrasies for familiar objects. If an
individual’s brain representation predicted that person’s simi-
larity judgments better than another person’s, we would have
evidence that the region in question has a role in representing
the individually unique percept. We tested for a greater within-
than between-subject brain-to-behavior RDM correlation using a
subject-label randomization test (Fig. 3B). For the unfamiliar
objects, the test revealed no evidence for a better prediction of the
similarity judgments within than between subjects in EVC [i-index =
−0.007, P(average within-subject r > average between-subject r) >
0.05] or in hIT [i-index = −0.008, P(average within-subject r > av-
erage between-subject r) > 0.05).
We next considered this relationship for familiar objects. The

brain-to-behavior RDM correlation for the familiar objects was
significantly larger within than between subjects in hIT [i-index =
0.05, P(average within-subject r > average between-subject r) <
0.01] but not in EVC [i-index = 0.02, P(average within-subject
r > average between-subject r) > 0.05] (Fig. 4B). An individ-
ual’s unique hIT representation thus predicts idiosyncrasies in
that person’s similarity judgments when the objects are per-
sonally meaningful.
An overview of all inferential results for EVC and hIT and

also for V1, V2, LOC, FFA, and the PPA is given in Fig. 5.

Discussion
Previous studies have shown that the basic categorical divisions
of IT are shared among people (20–22) and even among primate
species (23). Here we demonstrated that beyond this shared
categorical structure, the hIT representational geometry of
particular bodies, faces, places, and man-made objects is in-
dividually unique. Moreover, the representation predicted each
subject’s own similarity judgments (more closely than other sub-
jects’) when the objects were personally meaningful. This result
suggests that hIT forms part of the neural substrate of our in-
dividually unique perception of objects and their similarity
relationships. In addition, our results demonstrate that subtle,
individually unique representations of particular objects can
be captured with fMRI.
Further analyses showed clear evidence that the within-cate-

gory representational distances were individually unique in both
EVC and hIT, whereas the evidence for individually unique
between-category-centroid distances was weaker (SI Results,
section 1).

We found evidence for an individually unique representation
predictive of perceptual idiosyncrasies in hIT (but not in early
visual areas) and for personally meaningful (but not for un-
familiar) objects. EVC also exhibited an individually unique
representation but did not significantly predict perceptual idio-
syncrasies. The object similarity judgments were likely based on
higher-level visual and semantic representations. Such repre-
sentations are hosted in hIT, and not in EVC. hIT might explain
individual judgment idiosyncrasies here because the judgments
were based on its representation. EVC might predict judgments
of low-level visual similarity and their idiosyncrasies in individual
subjects—a hypothesis to be tested in future studies. As a step in
that direction, subjective percepts of visual size, a particular
nonsemantic property, have been shown to be correlated with
the early visual representation (36).
Functional differences as reported here ultimately must arise

from differences in the physical structure of each individual
brain. As a potential confound, functionally irrelevant anatomi-
cal idiosyncrasies, for example in the precise cortical folding
pattern in a particular subject, probably have some effect on our
estimates of representational geometry. Functionally irrelevant
anatomical variation therefore might have inflated the i-indices.
However, the idiosyncrasies of hIT representational geometries
were predictive of idiosyncrasies in similarity judgments and thus
were functionally relevant, ruling out the possibility that the
representational idiosyncrasies we observed are driven entirely
by functionally irrelevant anatomical variation.
What functionally relevant aspects of brain structure might

explain the functional idiosyncrasies we observed? The mi-
crostructure of cortical circuits certainly is unique to each in-
dividual. However, even at the level of gross anatomy, substantial
variation has been reported to predict behavioral measures. For
example, the size of primary visual cortex varies across individ-
uals by a factor of about 2.5 (37, 38). Interindividual variation in
V1 cortical magnification predicts variation of the magnitude of
visual size illusions across subjects (3, 39). Although other areas
might vary by smaller factors, many parts of the brain, including
cortical and subcortical structures, show gross anatomical vari-
ation across individuals that is predictive of cognitive and
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dicts individual judgment idiosyncrasies for familiar objects. (A) Brain
i-indices indicating individually unique brain representations. The i-index (Fig. 3)
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The brain–behavior i-index was significantly higher in hIT for familiar than
for unfamiliar objects. ****P < 0.0001, **P < 0.01; n.s., not significant,
Bonferroni-adjusted for two tests (for regions EVC and hIT). Interactions
were tested by bootstrap resampling of the subject pairs.
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ind = 0.10, p = 0.0023

ws = 0.18, p < 0.0001
[bs = 0.15, p < 0.0001]
ws = 0.13, p < 0.0001
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ws = 0.29, p < 0.0001
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Fig. 5. Summary of results. Significant results are marked with a checkmark
(in red for important novel results in regions EVC and hIT, for which we had
specific prior hypotheses). For the replicability results, the checkmarks
indicate significant within-subject replicability. Nonsignificant results are
marked with an X. RDM correlations (Pearson correlation coefficients: bs,
between-subject; ws, within-subject,), i-indices (ind = ws − bs), and the as-
sociated Bonferroni-adjusted P values are reported also. For summary ROIs
EVC and hIT, for which we had prior hypotheses, Bonferroni adjustment was
performed for two tests. For the other five ROIs, Bonferroni adjustment was
performed for five tests.
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behavioral differences (40). Our study demonstrates individual
differences in high-level semantic representations but cannot ad-
dress their structural basis. Our current interpretation is that the
representational idiosyncrasies might arise from the microstruc-
tural plasticity of cortex, which is driven by individual experience.
At the level of function, a brain region’s representation reflects

feedforward stimulus processing and feedback from higher-level
regions. Both feedforward and feedback processing could contrib-
ute to an individually unique representational geometry. For EVC,
the known anatomical differences are likely to affect feedforward
and lateral recurrent processing, providing one possible explanation
for the individually unique early representation. In addition, the
patterns of feedback elicited by each image might be individually
unique. For example, an individual’s interests might affect the
spatial distribution of attention during the viewing of a given image.
Individually unique patterns of attention-related response en-
hancements could contribute to the idiosyncrasies of the early
visual representation. Even if such attentional patterns originate
from high-level representations, there is no reason to expect two
objects whose images elicit similar spatial distributions of attention
to be judged as similar. An attentional account therefore also
would be consistent with the failure of the early visual dissim-
ilarities to predict the object similarity judgments.
Predictive coding theory provides another feedback-based in-

terpretation of our early visual results. Predictive coding theory
suggests that the activity in early visual cortex decreases when
higher regions “explain away” aspects of the stimulus through
feedback (41–43). This feedback would reduce overall activation
for familiar images compared with unfamiliar images. Consis-
tently, we observed significantly reduced activation in early visual
areas for the familiar images as compared with the unfamiliar
images (Fig. S8). We also observed significantly reduced acti-
vation for the unfamiliar objects in scanning day 2 as compared
with day 1, suggesting a further familiarization effect. The top-
down suppression of expected aspects of the representation also
should lead to reduced replicability of an individual’s RDM
in EVC for familiar images. In fact, we observed lower RDM
replicability in EVC for personally meaningful objects.
In hIT, as well, both feedforward and feedback processing

might contribute to the individually unique representations. Our
finding that judgment idiosyncrasies were significantly predict-
able from hIT only for the personally meaningful objects suggests
a specific role for feedback from the memory-related regions of
the medial temporal lobe (44). For example, inferred or associ-
ated scene components might be added to the representation in
hIT through feedback. This mechanism appears possible because
hIT can represent both perceived and remembered or imagined
objects (45–47) and can simultaneously represent multiple
objects (48, 49). In addition, the hIT representation is known to
be plastic, reflecting an individual’s experience (50).
Mnemonic enrichment might be expected to expand the rep-

resentational distances among personally meaningful objects that
have distinct associations. Alternatively, mnemonic enrichment
might be expected to contract the representational distances
between objects that have shared associations. We found no
evidence for either an expansion or a contraction of hIT repre-
sentational distances related to familiarity (SI Results, section 2).
One interpretation of this negative finding is that mnemonic
enrichment effects are weak or absent. Another possibility is that
the effects of distinct and shared associations cancel out across
all object pairs. Individually unique memory associations that
affect both the hIT representation and the similarity judgments
would be consistent with our finding that judgment idiosyncrasies
reflected idiosyncrasies in the hIT representation.
It is important to note that the predictions of perceptual idi-

osyncrasies from the hIT representation, although robustly bet-
ter than chance, are not very precise. Precision estimates (SI
Results, section 3) depend on many factors, including the number
of stimuli and the amount of averaging, and have little meaning
beyond the context of a particular study and analysis. Pre-
dicting a complex representational geometry is fundamentally

more challenging than predicting a unidimensional or binary vari-
able. Our results provide an important proof of concept. In the
future, individual measurements of representational geometries
might contribute to certain clinical applications, especially as
technology advances. For example, our approach might lend
itself to characterizing how individual representations develop
over the lifespan, how they differ between groups, and how they
are affected in disorders. There is a broad range of clinical dis-
orders that affect perception, including object agnosias (51),
autism (52), and Alzheimer’s disease (53). It might be possible to
track longitudinal changes in representational geometry in indi-
viduals as disorders develop, enabling us to observe the pro-
gression of a disorder and its response to therapeutic interventions
at the level of representational geometry.
In sum, we have shown that the hIT representation in an in-

dividual predicts idiosyncrasies of that person’s subjective per-
ceptual experience. Our findings suggest that fMRI combined
with pattern-information analyses has the power to open up
the unique mental worlds of individuals for empirical study at
the level of the brain.

Materials and Methods
Participants. Twenty subjects (10 female; mean age, 22.3 ± 4.12 y) with
normal or corrected-to-normal vision were recruited for the study. They
provided informed consent as part of a protocol approved by the Cambridge
Psychology Research Ethics Committee. Each subject was scanned twice
(median time window between scanning days, 11.5 ± 9 d).

Stimuli. Subjects were presented with 72 pictures of bodies, faces, places, and
man-made objects (Fig. 1A and Fig. S1). Each subject viewed 18 images from
his or her own photo album, 18 images from another subject’s photo album,
and 36 images that were shown to all subjects. The categories were equally
frequent in these three stimulus groups, and the photo-album images fell
into predefined conceptual slots (the subject’s own face, parent’s face, rel-
ative’s face, partner’s face, friend’s face, own hands, relative’s body, friend’s
body, familiar pet, own bedroom, own living room, own kitchen, front of
own house, own work place, own office desk/working environment, own
keys, own shoes, own vehicle) (Fig. S1). The subjects were instructed to
provide images with a minimal resolution of 600 × 600 pixels. All images
were inspected visually before experimentation for sharpness and general
quality. The 36 general objects were selected from a database of object
images held in our laboratory. All images were cropped or scaled at a resolution
of 600 × 600 pixels. All stimuli used in the experiments subtended ∼10° of
visual angle.

Similarity Judgments: Multiple Arrangement Method. As part of the behavioral
testing, the subjects performed a similarity judgments task. The multiple
arrangement (MA) method allows subjects to communicate multiple object-
pair similarities at once. In the MA method, subjects communicate perceived
object similarity by arranging multiple object images in 2D on a computer
screen by mouse drag-and-drop. Our MA method uses adaptive selection of
object subsets during measurement to estimate efficiently the similarity
perceived by each individual subject. The MA method has been described in
detail, and its test–retest reliability (r = 0.81) and external validity were
established in ref. 33. The subjects were instructed, “Please arrange these
objects according to their similarity” so that similar objects were placed close
together, and dissimilar objects were placed further apart. During the MA
task, a partial RDM is obtained after each trial, and the multiple partial
matrices are combined to give a single estimate of the entire similarity
judgments RDM.

fMRI. Scanning was carried out at the Medical Research Council–Cognition
and Brain Sciences Unit (Cambridge, UK) using a 3-Tesla Siemens Tim Trio
MRI scanner with a 12-channel head coil. Functional data were acquired
using T2*-weighted echoplanar images (64 × 64; 3 × 3 mm in-plane voxel
size; slices 3.75 mm thick; TR: 2 s; TE: 30 ms; flip angle: 78°). The acquisition
window was tilted up ∼30° from the horizontal plane to provide complete
coverage of the occipital and temporal lobes. Volumes were collected in
nine continuous runs for each participant. The initial eight volumes from the
runs were discarded to allow for scanner equilibration effects. Additionally,
magnetization-prepared rapid gradient echo structural images were ac-
quired (256 × 240 × 192; 1 mm3 isotropic voxels; TR: 2,250 ms; TE: 2.99 ms;
flip angle: 9°).
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Imaging Analysis. Preprocessing of the fMRI data was carried out using Sta-
tistical Parametric Mapping 8 (SPM8; www.fil.ion.ucl.ac.uk/spm/) and Matlab
independently for each scanning day. All functional volumes were realigned
to the first nondiscarded volume, slice time corrected, and coregistered to
the T1 structural volume. The functional volumes remained unsmoothed and
in their native space. For each voxel, we fit the time-series data using
GLMdenoise version 1.1 (http://kendrickkay.net/GLMdenoise/). GLMdenoise
implements a general linear model (GLM) analysis of fMRI data and uses
noise regressors derived from task-unrelated voxels to improve the accuracy
of beta weight estimates (54, 55). The GLM was modeled with a separate set
of regressors for each object item (72 objects + one extra regressor for the
anomaly detection trials). From this procedure, we obtained single-image
blood oxygen-level–dependent fMRI activation estimates. Contrast images

for each individual condition against the implicit baseline were generated
based on the fitted responses. The resulting t contrast images were used as
inputs for representational similarity analysis (16) in the EVC and hIT ROIs
(Fig. S9). Note that statistical inference on the RDMs (SI Materials and
Methods) does not rely on the estimates of the noise level over the fMRI
time course but on the independent RDM estimates obtained for each
scanning day and subject.
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